87 research outputs found

    Spatial variation in boundary conditions can govern selection and location of eyespots in butterfly wings

    Get PDF
    Despite being the subject of widespread study, many aspects of the development of eyespot patterns in butterfly wings remain poorly understood. In this work, we examine, through numerical simulations, a mathematical model for eyespot focus point formation in which a reaction-diffusion system is assumed to play the role of the patterning mechanism. In the model, changes in the boundary conditions at the veins at the proximal boundary alone are capable of determining whether or not an eyespot focus forms in a given wing cell and the eventual position of focus points within the wing cell. Furthermore, an auxiliary surface reaction diffusion system posed along the entire proximal boundary of the wing cells is proposed as the mechanism that generates the necessary changes in the proximal boundary profiles. In order to illustrate the robustness of the model, we perform simulations on a curved wing geometry that is somewhat closer to a biological realistic domain than the rectangular wing cells previously considered, and we also illustrate the ability of the model to reproduce experimental results on artificial selection of eyespots.Publisher PD

    The gut microbiome variability of a butterflyfish increases on severely degraded Caribbean reefs.

    Get PDF
    Environmental degradation has the potential to alter key mutualisms that underlie the structure and function of ecological communities. How microbial communities associated with fishes vary across populations and in relation to habitat characteristics remains largely unknown despite their fundamental roles in host nutrition and immunity. We find significant differences in the gut microbiome composition of a facultative coral-feeding butterflyfish (Chaetodon capistratus) across Caribbean reefs that differ markedly in live coral cover (∼0-30%). Fish gut microbiomes were significantly more variable at degraded reefs, a pattern driven by changes in the relative abundance of the most common taxa potentially associated with stress. We also demonstrate that fish gut microbiomes on severely degraded reefs have a lower abundance of Endozoicomonas and a higher diversity of anaerobic fermentative bacteria, which may suggest a less coral dominated diet. The observed shifts in fish gut bacterial communities across the habitat gradient extend to a small set of potentially beneficial host associated bacteria (i.e., the core microbiome) suggesting essential fish-microbiome interactions may be vulnerable to severe coral degradation

    Highly conserved gene order and numerous novel repetitive elements in genomic regions linked to wing pattern variation in Heliconius butterflies

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.BACKGROUND: With over 20 parapatric races differing in their warningly colored wing patterns, the butterfly Heliconius erato provides a fascinating example of an adaptive radiation. Together with matching races of its co-mimic Heliconius melpomene, H. erato also represents a textbook case of Müllerian mimicry, a phenomenon where common warning signals are shared amongst noxious organisms. It is of great interest to identify the specific genes that control the mimetic wing patterns of H. erato and H. melpomene. To this end we have undertaken comparative mapping and targeted genomic sequencing in both species. This paper reports on a comparative analysis of genomic sequences linked to color pattern mimicry genes in Heliconius. RESULTS: Scoring AFLP polymorphisms in H. erato broods allowed us to survey loci at approximately 362 kb intervals across the genome. With this strategy we were able to identify markers tightly linked to two color pattern genes: D and Cr, which were then used to screen H. erato BAC libraries in order to identify clones for sequencing. Gene density across 600 kb of BAC sequences appeared relatively low, although the number of predicted open reading frames was typical for an insect. We focused analyses on the D- and Cr-linked H. erato BAC sequences and on the Yb-linked H. melpomene BAC sequence. A comparative analysis between homologous regions of H. erato (Cr-linked BAC) and H. melpomene (Yb-linked BAC) revealed high levels of sequence conservation and microsynteny between the two species. We found that repeated elements constitute 26% and 20% of BAC sequences from H. erato and H. melpomene respectively. The majority of these repetitive sequences appear to be novel, as they showed no significant similarity to any other available insect sequences. We also observed signs of fine scale conservation of gene order between Heliconius and the moth Bombyx mori, suggesting that lepidopteran genome architecture may be conserved over very long evolutionary time scales. CONCLUSION: Here we have demonstrated the tractability of progressing from a genetic linkage map to genomic sequence data in Heliconius butterflies. We have also shown that fine-scale gene order is highly conserved between distantly related Heliconius species, and also between Heliconius and B. mori. Together, these findings suggest that genome structure in macrolepidoptera might be very conserved, and show that mapping and positional cloning efforts in different lepidopteran species can be reciprocally informative.The work was funded by U.S. National Science Foundation grants IOB 0344705 and DEB 0715096 to WOM. The H. erato BAC library was constructed by C. Wu, H. Zhang (TAMU), and M. R. Goldsmith (URI) under NSF Grant IBN-0208388. In addition, the Computational Biology Service Unit at Cornell University, which is partially funded by Microsoft Corporation, provided bioinformatics support for our analysis of genomic repeat structure. AFLP analysis and sequencing of PCR products was carried out at the Sequencing and Genotyping Center at the University of Puerto RicoRio Piedras. We thank Nicola Flanagan, Alexandra Tobler, Karla Maldonado, Jenny Acevedo Gonzales, Hector Alejandro Merchan, Yhadi Cotto, Kelitt Santiago and Felix Araujo Perez for help in rearing and maintaining butterfly stocks. Finally, a special thanks to Daniel P. Lindstrom for his support and helpful suggestions during manuscript preparation

    Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in Heliconius erato

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Wing pattern evolution in Heliconius butterflies provides some of the most striking examples of adaptation by natural selection. The genes controlling pattern variation are classic examples of Mendelian loci of large effect, where allelic variation causes large and discrete phenotypic changes and is responsible for both convergent and highly divergent wing pattern evolution across the genus. We characterize nucleotide variation, genotype-by-phenotype associations, linkage disequilibrium (LD), and candidate gene expression patterns across two unlinked genomic intervals that control yellow and red wing pattern variation among mimetic forms of Heliconius erato. Despite very strong natural selection on color pattern, we see neither a strong reduction in genetic diversity nor evidence for extended LD across either patterning interval. This observation highlights the extent that recombination can erase the signature of selection in natural populations and is consistent with the hypothesis that either the adaptive radiation or the alleles controlling it are quite old. However, across both patterning intervals we identified SNPs clustered in several coding regions that were strongly associated with color pattern phenotype. Interestingly, coding regions with associated SNPs were widely separated, suggesting that color pattern alleles may be composed of multiple functional sites, conforming to previous descriptions of these loci as "supergenes." Examination of gene expression levels of genes flanking these regions in both H. erato and its co-mimic, H. melpomene, implicate a gene with high sequence similarity to a kinesin as playing a key role in modulating pattern and provides convincing evidence for parallel changes in gene regulation across co-mimetic lineages. The complex genetic architecture at these color pattern loci stands in marked contrast to the single casual mutations often identified in genetic studies of adaptation, but may be more indicative of the type of genetic changes responsible for much of the adaptive variation found in natural populations.Funding: Funding for this study was provided by National Science Foundation grants to WOM (DEB-0715096 and IBN-0344705) and BAC (DEB-0513424). Funding for work on H. melpomene came from a BBSRC grant to CDJ and RHf-C (011845). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Complex modular architecture around a simple toolkit of wing pattern genes

    Get PDF
    Identifying the genomic changes that control morphological variation and understanding how they generate diversity is a major goal of evolutionary biology. In Heliconius butterflies, a small number of genes control the development of diverse wing colour patterns. Here, we used full-genome sequencing of individuals across the Heliconius erato radiation and closely related species to characterize genomic variation associated with wing pattern diversity. We show that variation around colour pattern genes is highly modular, with narrow genomic intervals associated with specific differences in colour and pattern. This modular architecture explains the diversity of colour patterns and provides a flexible mechanism for rapid morphological diversification.We acknowledge the University of Puerto Rico, the Puerto Rico INBRE grant P20 GM103475 from the National Institute for General Medical Sciences (NIGMS), a component of the National Institutes of Health (NIH); CNRS Nouraugues and CEBA awards (B.A.C.); National Science Foundation awards DEB-1257839 (B.A.C.), DEB-1257689 (W.O.M.), DEB-1027019 (W.O.M.); awards 1010094 and 1002410 from the Experimental Program to Stimulate Competitive Research (EPSCoR) program of the National Science Foundation (NSF) for computational resources; and the Smithsonian Institution. This research was supported in part by Lilly Endowment, Inc., through its support for the Indiana University Pervasive Technology Institute, and in part by the Indiana METACyt Initiative. The Indiana METACyt Initiative at IU is also supported in part by Lilly Endowment, Inc

    A novel widespread cryptic species and phylogeographic patterns within several giant clam species (Cardiidae: Tridacna) from the Indo-Pacific Ocean

    Get PDF
    Giant clams (genus Tridacna) are iconic coral reef animals of the Indian and Pacific Oceans, easily recognizable by their massive shells and vibrantly colored mantle tissue. Most Tridacna species are listed by CITES and the IUCN Redlist, as their populations have been extensively harvested and depleted in many regions. Here, we survey Tridacna crocea and Tridacna maxima from the eastern Indian and western Pacific Oceans for mitochondrial (COI and 16S) and nuclear (ITS) sequence variation and consolidate these data with previous published results using phylogenetic analyses. We find deep intraspecific differentiation within both T. crocea and T. maxima. In T. crocea we describe a previously undocumented phylogeographic division to the east of Cenderawasih Bay (northwest New Guinea), whereas for T. maxima the previously described, distinctive lineage of Cenderawasih Bay can be seen to also typify western Pacific populations. Furthermore, we find an undescribed, monophyletic group that is evolutionarily distinct from named Tridacna species at both mitochondrial and nuclear loci. This cryptic taxon is geographically widespread with a range extent that minimally includes much of the central Indo-Pacific region. Our results reinforce the emerging paradigm that cryptic species are common among marine invertebrates, even for conspicuous and culturally significant taxa. Additionally, our results add to identified locations of genetic differentiation across the central Indo-Pacific and highlight how phylogeographic patterns may differ even between closely related and co-distributed species

    The combined effect of two mutations that alter serially homologous color pattern elements on the fore and hindwings of a butterfly

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability for serially homologous structures to acquire a separate identity has been primarily investigated for structures dependent on Hox gene input but is still incompletely understood in other systems. The fore and hindwings of butterflies are serially homologous structures as are the serially homologous eyespots that can decorate each of these wings. Eyespots can vary in number between fore and hindwings of the same individual and mutations of large effect can control the total number of eyespots that each of the wings displays. Here we investigate the genetics of a new spontaneous color pattern mutation, <it>Missing</it>, that alters eyespot number in the nymphalid butterfly, <it>Bicyclus anynana</it>. We further test the interaction of <it>Missing </it>with a previously described mutation, <it>Spotty</it>, describe the developmental stage affected by <it>Missing</it>, and test whether <it>Missing </it>is a mutant variant of the gene <it>Distal-less </it>via a linkage association study.</p> <p>Results</p> <p><it>Missing </it>removes or greatly reduces the size of two of the hindwing eyespots from the row of seven eyespots, with no detectable effect on the rest of the wing pattern. Offspring carrying a single <it>Missing </it>allele display intermediate sized eyespots at these positions. <it>Spotty </it>has the opposite effect of <it>Missing</it>, i.e., it introduces two extra eyespots in homologous wing positions to those affected by <it>Missing</it>, but on the forewing. When <it>Missing </it>is combined with <it>Spotty </it>the size of the two forewing eyespots decreases but the size of the hindwing spots stays the same, suggesting that these two mutations have a combined effect on the forewing such that <it>Missing </it>reduces eyespot size when in the presence of a <it>Spotty </it>mutant allele, but that <it>Spotty </it>has no effect on the hindwing. <it>Missing </it>prevents the complete differentiation of two of the eyespot foci on the hindwing. We found no evidence for any linkage between the <it>Distal-less </it>and <it>Missing </it>genes.</p> <p>Conclusion</p> <p>The spontaneous mutation <it>Missing </it>controls the differentiation of the signaling centers of a subset of the serial homologous eyespots present on both the fore and the hindwing in a dose-dependent fashion. The effect of <it>Missing </it>on the forewing, however, is only observed when the mutation <it>Spotty </it>introduces additional eyespots on this wing. <it>Spotty</it>, on the other hand, controls the differentiation of eyespot centers only on the forewing. <it>Spotty</it>, unlike <it>Missing</it>, may be under Ubx gene regulation, since it affects a subset of eyespots on only one of the serially homologous wings.</p
    corecore